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🪆
Dynamic meshing

Domain
What we want to achieve is a dynamic construction of a mesh, with the possibility to 
place a set of polylines over the domain.

for the sake of simplicity we will define:

input 

only integer coordinates

only angles 

∈ [0,U ]2

∈ {0°, 45°, 90°, 135°}
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Properties
now we can define the “nice properties” we discussed in the QuadTree introduction for 
our triangulation:

Consistent mesh
the meshes must have no t-edges, being 
when the edges of a triangle touches the 
side of another, otherwise we will be 
introducing edges

Constrained mesh
the polylinesmust be parts of the edges, 
we do not want interception of 
polyghones, otherwise we will be 
introducing edges

Well shaped mesh
we do not want really acute angles, called 
“slivers”, they could be source of 
problems

Adaptive mesh
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we do not want to introduce too many 
triangles when they are useless, 
otherwise wi whould be wasting triangles 
and computational power

Solution
Obviously our solution is the use of 
quadtrees, we need to build a quadtree 
over a set of polylines. the algorhitm is 
similiar to the one where we build a 
quadtree over a set of points, but we have 
a different stopping criterion:

size of nodes = 1x1

no edges intercepts or touches the 
node

but some problems could still happen, like for example:

some slivers
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the solution is easy: we need to balance the quad tree!

A sketch of the solution

input: S = polyghon with "properties" 
output: M = mesh with "nice properties" 
balance T->Q 
initialize M with edges induced by Q 
for each leaf q in Q: 
 if q is intercepted by edge e in S: 
  add edge segment to M 
 else if q has only vertices in corners: 
  add diagonal to M 
 else #Q has a vertex inside 
  add center point to M 
  triangulate with te vertices 

Lemma

a t-edge
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Question: how many triangules can the mesh have?

Let s be a polyline with above properties in , there is a triangularar mesh that has 
 triangles that can be constructed in  time

where  is the sum of lenght of all polylines

Proof
cells that gets touched or intercepted has size 1x1, due to stopping condition, so it 
means that an edge touched or intercepted by at most  cells, 4 for the corners 

and 3 for each unit of lenght(the worst case are the diagonal lines)

the number of touched/intercepted leaves must be in the order of the total lenght of the 
polylines , so the leaves in the last layer must be in the order of , and 
since the depth of the tree is  we get a maximum number of childs in the order 
of  and since every leaf can produce at maximum 4 trinagles(4 
diagonal edges and 4 horizontal) we have that as a complexity

the time compexity now depends just from the time needed to build the triangles, we 
need a  time to reach a leaf node and a  time to build the triangle, 
leaving us with a   time complexity

[0,U ]2

O(log (U)p(s))2 O(p(s)log U)2
2

p(s)

4 + 3
2
l

in this case we have  
touching/intercepting nodes, for each touched 

square

2(l +2)

in this case we have 5l+1 touching/intercepting 
nodes

O(p(s)) O(4p(s))
log (U)2

O(p(s)log (U))2

O(log U)2 O(1)
O(p(s)log (U))2

2
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Meshing for arbitrary polylines
we assumed the lines always has only integer coordinates and only angles in the range 

now we want to see what happens if thoose boundaries are violated. to do so we need to 
introduce some different leaves nodes:

edge nodes

vertex nodes

and different stopping criterions:

max depth reached(good practice)

the node is empty(no vertex or edge in the node)

the node has exactly one edge or part of edge inside, so no vertex

exactly one vertex and no edges intercepting  the node incident to the vertex

in order to do the triangulation we need to introduce the concept of aspect ratio of a 
triangle

given 

l the longest side of the triangle

h the height 

the aspect ratio of a triange is 

note that the minimum value is 

if  is the smallest angle of the triangle we always have 

our objective is now to create triangules with an aspect rateo close to the optimum, we 
need to modify the alghorithm modified with the new stopping criterion, then we need to 
triangulate using 3 cases:

case 1:empty leaf
we need to triangulate using some templates, the node only has a vertex on the edges, 
so we introduce new edges to create triangules

{0°, 45°, 90°, 135°}

α = h
l

α ≥ ≈
3
2 1.15

θ
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Case 2:leaf containing an edge that intercepts the edge
in this case we can do something if the 
interceptions happens in the inner thirds 
of the node, doin in this way we are not 
changing too mutch the aspect ratio of the 
triangules

in this case we can introduce vertexes in the side or in the middle and edges to keep the 
nice triangulation
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Case 3: in any other cases
we need to “warp” the square to fit the edges
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Delaunay triangulation
this is a nice way to improve our triangulation.

A triangule is a Delauney triangule its circumcicle does not contains other 
verteces from the mesh we can perform an operation called edge flip  where we rotate 
inner edges inside a mesh in order to respect delauney rule

⟺
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Cool material
https://shwestrick.github.io/2021/12/18/delaunay-viz.html

https://shwestrick.github.io/2021/12/18/delaunay-viz.html

