
Dynamic meshing 1

🪆
Dynamic meshing

Domain
What we want to achieve is a dynamic construction of a mesh, with the possibility to
place a set of polylines over the domain.

for the sake of simplicity we will define:

input

only integer coordinates

only angles

∈ [0,U]2

∈ {0°, 45°, 90°, 135°}

Dynamic meshing 2

Properties
now we can define the “nice properties” we discussed in the QuadTree introduction for
our triangulation:

Consistent mesh
the meshes must have no t-edges, being
when the edges of a triangle touches the
side of another, otherwise we will be
introducing edges

Constrained mesh
the polylinesmust be parts of the edges,
we do not want interception of
polyghones, otherwise we will be
introducing edges

Well shaped mesh
we do not want really acute angles, called
“slivers”, they could be source of
problems

Adaptive mesh

Dynamic meshing 3

we do not want to introduce too many
triangles when they are useless,
otherwise wi whould be wasting triangles
and computational power

Solution
Obviously our solution is the use of
quadtrees, we need to build a quadtree
over a set of polylines. the algorhitm is
similiar to the one where we build a
quadtree over a set of points, but we have
a different stopping criterion:

size of nodes = 1x1

no edges intercepts or touches the
node

but some problems could still happen, like for example:

some slivers

Dynamic meshing 4

the solution is easy: we need to balance the quad tree!

A sketch of the solution

input: S = polyghon with "properties"
output: M = mesh with "nice properties"
balance T->Q
initialize M with edges induced by Q
for each leaf q in Q:
 if q is intercepted by edge e in S:
 add edge segment to M
 else if q has only vertices in corners:
 add diagonal to M
 else #Q has a vertex inside
 add center point to M
 triangulate with te vertices

Lemma

a t-edge

Dynamic meshing 5

Question: how many triangules can the mesh have?

Let s be a polyline with above properties in , there is a triangularar mesh that has
 triangles that can be constructed in time

where is the sum of lenght of all polylines

Proof
cells that gets touched or intercepted has size 1x1, due to stopping condition, so it
means that an edge touched or intercepted by at most cells, 4 for the corners

and 3 for each unit of lenght(the worst case are the diagonal lines)

the number of touched/intercepted leaves must be in the order of the total lenght of the
polylines , so the leaves in the last layer must be in the order of , and
since the depth of the tree is we get a maximum number of childs in the order
of and since every leaf can produce at maximum 4 trinagles(4
diagonal edges and 4 horizontal) we have that as a complexity

the time compexity now depends just from the time needed to build the triangles, we
need a time to reach a leaf node and a time to build the triangle,
leaving us with a time complexity

[0,U]2

O(log (U)p(s))2 O(p(s)log U)2
2

p(s)

4 + 3
2
l

in this case we have
touching/intercepting nodes, for each touched

square

2(l +2)

in this case we have 5l+1 touching/intercepting
nodes

O(p(s)) O(4p(s))
log (U)2

O(p(s)log (U))2

O(log U)2 O(1)
O(p(s)log (U))2

2

Dynamic meshing 6

Meshing for arbitrary polylines
we assumed the lines always has only integer coordinates and only angles in the range

now we want to see what happens if thoose boundaries are violated. to do so we need to
introduce some different leaves nodes:

edge nodes

vertex nodes

and different stopping criterions:

max depth reached(good practice)

the node is empty(no vertex or edge in the node)

the node has exactly one edge or part of edge inside, so no vertex

exactly one vertex and no edges intercepting the node incident to the vertex

in order to do the triangulation we need to introduce the concept of aspect ratio of a
triangle

given

l the longest side of the triangle

h the height

the aspect ratio of a triange is

note that the minimum value is

if is the smallest angle of the triangle we always have

our objective is now to create triangules with an aspect rateo close to the optimum, we
need to modify the alghorithm modified with the new stopping criterion, then we need to
triangulate using 3 cases:

case 1:empty leaf
we need to triangulate using some templates, the node only has a vertex on the edges,
so we introduce new edges to create triangules

{0°, 45°, 90°, 135°}

α = h
l

α ≥ ≈
3
2 1.15

θ

Dynamic meshing 7

Case 2:leaf containing an edge that intercepts the edge
in this case we can do something if the
interceptions happens in the inner thirds
of the node, doin in this way we are not
changing too mutch the aspect ratio of the
triangules

in this case we can introduce vertexes in the side or in the middle and edges to keep the
nice triangulation

Dynamic meshing 8

Case 3: in any other cases
we need to “warp” the square to fit the edges

Dynamic meshing 9

Delaunay triangulation
this is a nice way to improve our triangulation.

A triangule is a Delauney triangule its circumcicle does not contains other
verteces from the mesh we can perform an operation called edge flip where we rotate
inner edges inside a mesh in order to respect delauney rule

⟺

Dynamic meshing 10

Cool material
https://shwestrick.github.io/2021/12/18/delaunay-viz.html

https://shwestrick.github.io/2021/12/18/delaunay-viz.html

